Files
gemini-cli/docs/cli/generation-settings.md

211 lines
6.3 KiB
Markdown

# Advanced Model Configuration
This guide details the Model Configuration system within the Gemini CLI.
Designed for researchers, AI quality engineers, and advanced users, this system
provides a rigorous framework for managing generative model hyperparameters and
behaviors.
> **Warning**: This is a power-user feature. Configuration values are passed
> directly to the model provider with minimal validation. Incorrect settings
> (e.g., incompatible parameter combinations) may result in runtime errors from
> the API.
## 1. System Overview
The Model Configuration system (`ModelConfigService`) enables deterministic
control over model generation. It decouples the requested model identifier
(e.g., a CLI flag or agent request) from the underlying API configuration. This
allows for:
- **Precise Hyperparameter Tuning**: Direct control over `temperature`, `topP`,
`thinkingBudget`, and other SDK-level parameters.
- **Environment-Specific Behavior**: Distinct configurations for different
operating contexts (e.g., testing vs. production).
- **Agent-Scoped Customization**: Applying specific settings only when a
particular agent is active.
The system operates on two core primitives: **Aliases** and **Overrides**.
## 2. Configuration Primitives
These settings are located under the `modelConfigs` key in your configuration
file.
### Aliases (`customAliases`)
Aliases are named, reusable configuration presets. Users should define their own
aliases (or override system defaults) in the `customAliases` map.
- **Inheritance**: An alias can `extends` another alias (including system
defaults like `chat-base`), inheriting its `modelConfig`. Child aliases can
overwrite or augment inherited settings.
- **Abstract Aliases**: An alias is not required to specify a concrete `model`
if it serves purely as a base for other aliases.
**Example Hierarchy**:
```json
"modelConfigs": {
"customAliases": {
"base": {
"modelConfig": {
"generateContentConfig": { "temperature": 0.0 }
}
},
"chat-base": {
"extends": "base",
"modelConfig": {
"generateContentConfig": { "temperature": 0.7 }
}
}
}
}
```
### Overrides (`overrides`)
Overrides are conditional rules that inject configuration based on the runtime
context. They are evaluated dynamically for each model request.
- **Match Criteria**: Overrides apply when the request context matches the
specified `match` properties.
- `model`: Matches the requested model name or alias.
- `overrideScope`: Matches the distinct scope of the request (typically the
agent name, e.g., `codebaseInvestigator`).
**Example Override**:
```json
"modelConfigs": {
"overrides": [
{
"match": {
"overrideScope": "codebaseInvestigator"
},
"modelConfig": {
"generateContentConfig": { "temperature": 0.1 }
}
}
]
}
```
## 3. Resolution Strategy
The `ModelConfigService` resolves the final configuration through a two-step
process:
### Step 1: Alias Resolution
The requested model string is looked up in the merged map of system `aliases`
and user `customAliases`.
1. If found, the system recursively resolves the `extends` chain.
2. Settings are merged from parent to child (child wins).
3. This results in a base `ResolvedModelConfig`.
4. If not found, the requested string is treated as the raw model name.
### Step 2: Override Application
The system evaluates the `overrides` list against the request context (`model`
and `overrideScope`).
1. **Filtering**: All matching overrides are identified.
2. **Sorting**: Matches are prioritized by **specificity** (the number of
matched keys in the `match` object).
- Specific matches (e.g., `model` + `overrideScope`) override broad matches
(e.g., `model` only).
- Tie-breaking: If specificity is equal, the order of definition in the
`overrides` array is preserved (last one wins).
3. **Merging**: The configurations from the sorted overrides are merged
sequentially onto the base configuration.
## 4. Configuration Reference
The configuration follows the `ModelConfigServiceConfig` interface.
### `ModelConfig` Object
Defines the actual parameters for the model.
| Property | Type | Description |
| :---------------------- | :------- | :----------------------------------------------------------------- |
| `model` | `string` | The identifier of the model to be called (e.g., `gemini-2.5-pro`). |
| `generateContentConfig` | `object` | The configuration object passed to the `@google/genai` SDK. |
### `GenerateContentConfig` (Common Parameters)
Directly maps to the SDK's `GenerateContentConfig`. Common parameters include:
- **`temperature`**: (`number`) Controls output randomness. Lower values (0.0)
are deterministic; higher values (>0.7) are creative.
- **`topP`**: (`number`) Nucleus sampling probability.
- **`maxOutputTokens`**: (`number`) Limit on generated response length.
- **`thinkingConfig`**: (`object`) Configuration for models with reasoning
capabilities (e.g., `thinkingBudget`, `includeThoughts`).
## 5. Practical Examples
### Defining a Deterministic Baseline
Create an alias for tasks requiring high precision, extending the standard chat
configuration but enforcing zero temperature.
```json
"modelConfigs": {
"customAliases": {
"precise-mode": {
"extends": "chat-base",
"modelConfig": {
"generateContentConfig": {
"temperature": 0.0,
"topP": 1.0
}
}
}
}
}
```
### Agent-Specific Parameter Injection
Enforce extended thinking budgets for a specific agent without altering the
global default, e.g. for the `codebaseInvestigator`.
```json
"modelConfigs": {
"overrides": [
{
"match": {
"overrideScope": "codebaseInvestigator"
},
"modelConfig": {
"generateContentConfig": {
"thinkingConfig": { "thinkingBudget": 4096 }
}
}
}
]
}
```
### Experimental Model Evaluation
Route traffic for a specific alias to a preview model for A/B testing, without
changing client code.
```json
"modelConfigs": {
"overrides": [
{
"match": {
"model": "gemini-2.5-pro"
},
"modelConfig": {
"model": "gemini-2.5-pro-experimental-001"
}
}
]
}
```